Introduction

The Fundamental Seismic Principle
Average velocity
Modes of acoustic energy propagation
Compressional wave, Shear wave
Raleigh wave, Others
Rock properties
Interval velocity
Density
Poisson’s ratio
Propagation of a P-wave
A simple seismic experiment
A basic reflection model
Effect of wavelet length
Effect of signal to noise ratio

Basic Signal Theory
Properties of the cosine wave
Fourier decomposition
The effect of phase
The effect of amplitude
Principles of filtering

Resolution and Bandwidth
Simple wedge model – variable bandwidth
Simple wedge model – variable phase
Simple wedge model – variable signal/noise ratio
Bandwidth

Energy Loss Mechanisms
Reflection coefficients and transmission losses
Mode conversion and energy partition
Spherical divergence
Absorption

The Energy Source
Desired source qualities
Dynamite vs Vibroseis
Vibroseis – Structural aspects
Vibroseis – Hydraulic aspects
Vibroseis – Electrical aspects
Vibroseis – Signal theory

Correlation and Vibroseis
Overview of correlation
Sweep length and noise
Noise suppression tools
Sweep length
Number of sweeps
Noise edit algorithms
Number of vibrators
Array effect
Types of noise
Balancing sweep effort with production time
Sweep effort
Pad time
Sweep length vs number of sweeps
Number of sweeps vs daily production
Sweeps vs vibrators

Tapers
Effect on sidelobes
Effect on signal energy and bandwidth
Tapers as filters
Effect on machinery
Non-Linear sweeps
Linear vs +3 dB/oct Hi-Dwell non-linear sweep
+3 dB/oct with tapers
+6 dB/oct with tapers
-3 dB/oct with tapers
Comparison of linear, +3dB/oct & +6 dB/oct sweeps
Linear vs Non-linear sweeps – Effect on tapers
Linear, +3dB/oct, +6dB/oct and star tapers
Linear, +3Db/oct, +6Db/oct and sweep rate
Linear, +3dB/oct, +6dB/oct vs –3dB/oct

Vari-Sweep
Coupling
Upsweep vs downsweep
Effect of coupling
Time delay to onset a distortion
Harmonic distortion
Benefits of sweep length
SerQC plots

Evaluation of Noise
Analysis of coherent noise
Array Design
Simple linear array design
Optimizing a two sub-array system
Optimizing a three sub-array system
Spatial convolution and sub-arrays

Trapped Mode and Guided Waves, A common noise problem

Dual Source Vibroseis
Plus-Minus method
Up-Down method
Vari-Sweep
Dual sourcing (Ping-Pong)
Slip sweep

Sci-Fi Technology
Introduction
Data Acquisition: Techniques and equipment
Data Processing: Separation and Inversion
Pre-stacked and stacked data examples
summary