VIBROSEIS THEORY AND PARAMETER DESIGN

COURSE OUTLINE

- **Introduction**
- **The Fundamental Seismic Principle**
 - Average velocity
 - Modes of acoustic energy propagation
 - Compressional wave, Shear wave
 - Raleigh wave, Others
 - Rock properties
 - Interval velocity
 - Density
 - Poisson’s ratio
 - Propagation of a P-wave
 - A simple seismic experiment
 - A basic reflection model
 - Effect of wavelet length
 - Effect of signal to noise ratio
- **Basic Signal Theory**
 - Properties of the cosine wave
 - Fourier decomposition
 - The effect of phase
 - The effect of amplitude
 - Principles of filtering
- **Resolution and Bandwidth**
 - Simple wedge model – variable bandwith
 - Simple wedge model – variable phase
 - Simple wedge model – variable signal/noise ratio
 - Bandwith
- **Energy Loss Mechanisms**
 - Reflection coefficients and transmission losses
 - Mode conversion and energy partition
 - Spherical divergence
 - Absorption
- **The Energy Source**
 - Desired source qualities
 - Dynamite vs Vibroseis
 - Vibroseis – Structural aspects
 - Vibroseis – Hydraulic aspects
 - Vibroseis – Electrical aspects
 - Vibroseis – Signal theory
- **Correlation and Vibroseis**
 - Overview of correlation
 - Sweep length and noise
 - Noise suppression tools
 - Sweep length
 - Number of sweeps
 - Noise edit algorithms
 - Number of vibrators
 - Array effect
 - Types of noise
 - Balancing sweep effort with production time
 - Sweep effort
 - Pad time
 - Sweep length vs number of sweeps
 - Number of sweeps vs daily production
 - Sweeps vs vibrators
 - Tapers
 - Effect on sidelobes
 - Effect on signal energy and bandwith
 - Tapers as filters
 - Effect on machinery
- **Non-Linear sweeps**
 - Linear vs +3 dB/oct Hi-Dwell non-linear sweep
 - +3 dB/oct with tapers
 - +6 dB/oct with tapers
 - -3 dB/oct with tapers
 - Comparison of linear, +3dB/oct & +6 dB/oct sweeps
 - Linear vs Non-linear sweeps –Effect on tapers
 - Linear, +3dB/oct, +6dB/oct and star tapers
 - Linear, +3dB/oct, +6dB/oct and sweep rate
 - Linear, +3dB/oct, +6dB/oct vs -3dB/oct
- **Vari-Sweep**
 - Coupling
 - Upsweep vs downsweep
 - Effect of coupling
 - Time delay to onset a distortion
 - Harmonic distortion
 - Benefits of sweep length
 - SerQC plots
- **Evaluation of Noise**
 - Analysis of coherent noise
 - Array Design
 - Simple linear array design
 - Optimizing a two sub-array system
 - Optimizing a three sub-array system
 - Spatial convolution and sub-arrays
- **Trapped Mode and Guided Waves, A common noise problem**
- **Dual Source Vibroseis**
 - Plus-Minus method
 - Up-Down method
 - Vari-Sweep
 - Dual sourcing (Ping-Pong)
 - Slip sweep
- **Sci-Fi Technology**
 - Introduction
 - Data Acquisition: Techniques and equipment
 - Data Processing: Separation and Inversion
 - Pre-stacked and stacked data examples
 - summary