

VIBROSEIS THEORY AND PARAMETER DESIGN **COURSE OUTLINE**

 \div

 $\dot{\mathbf{v}}$

	Introduction
	The Fundamental Seismie Dringinle
•••	Average velocity
	Modes of acoustic anorgy propagation
	Compressional wave Shear wave
	Paleigh wave, Others
	Rateign wave, Others
	Interval valoaity
	Dongity
	Delisary Deisson's ratio
	Poisson s failo
	A simple sciencia superiorent
	A simple seismic experiment
	A basic reflection model
	Effect of wavelet length
•	Effect of signal to noise ratio
***	Basic Signal Theory
	Properties of the cosine wave
	Fourier decomposition
	The effect of phase
	The effect of amplitude
	Principles of filtering
*	Resolution and Bandwith
	Simple wedge model – variable bandwith
	Simple wedge model – variable phase
	Simple wedge model – variable signal/noise
	ratio
	Bandwith
*	Energy Loss Mechanisms
	Reflection coefficients and transmission losses
	Mode conversion and energy partition
	Spherical divergence
	Absorption
*	The Energy Source
	Desired source qualities
	Dynamite vs Vibroseis
	Vibroseis – Structural aspects
	Vibroseis – Hydraulic aspects
	Vibroseis – Electrical aspects
	Vibroseis – Signal theory
*	Correlation and Vibroseis
	Overview of correlation
	Sweep length and noise
	Noise suppression tools
	Sweep length
	Number of sweeps
	Noise edit algorithms
	Number of vibrators
	Array effect
	Types of noise
	Balancing sweep effort with production time
	Sweep effort
	Pad time
	Sweep length vs number of sweeps
	Number of sweeps vs daily production
	Sweeps vs vibrators

Tapers Effect on sidelobes Effect on signal energy and bandwith Tapers as filters Effect on machinery Non-Linear sweeps Linear vs +3 dB/oct Hi-Dwell non-linear sweep +3 dB/oct with tapers +6 dB/oct with tapers -3 dB/oct with tapers Comparison of linear, +3dB/oct & +6 dB/oct sweeps Linear vs Non-linear sweeps -Effect on tapers Linear, +3dB/oct, +6dB/oct and star tapers Linear, +3dB/oct, +6dB/oct and sweep rate Linear, +3dB/oct, +6dB/oct vs -3dB/oct Vari-Sweep Coupling Upsweep vs downsweep Effect of coupling Time delay to onset a distortion Harmonic distortion Benefits of sweep length SerQC plots \Leftrightarrow **Evaluation of Noise** Analysis of coherent noise Array Design Simple linear array design Optimizing a two sub-array system Optimizing a three sub-array system Spatial convolution and sub-arrays Trapped Mode and Guided Waves, A common noise problem **Dual Source Vibroseis** Plus-Minus method Up-Down method Vari-Sweep Dual sourcing (Ping-Pong) Slip sweep Sei-Fi Technology \Leftrightarrow Introduction Data Acquisition: Techniques and equipment Data Processing: Separation and Inversion Pre-stacked and stacked data examples summary